
1

G52CPP
C++ Programming

Lecture 11

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last lecture

• new and delete

• Inheritance

• Virtual functions

Uninitialised variables

class MyClass
{
public:

int ai[4];
short j;

};

• Member data of basic types will be uninitialised
• Use the initialisation list to initialise variable
• Use the constructor to set values for arrays

– The default constructors do nothing
3

4

This lecture

• this and static members

• References
– Act like pointers
– Look like values

• More const
• And mutable

5

The this pointer

6

The this pointer

• An object is a collection of data (its state)
• A class defines the structure of the object and

what you can do with it (a design for an object)
– e.g. Clothing, cars, programs, etc

• For functions to actually do something to an
object, they need to know which object to affect

• (Non-static) member functions have an implicit
extra parameter saying which object to act on
– Parameter type is a pointer to object (of correct class)
– And the parameter name is this

• Note: this exists in Java too, as you know
– As an object reference to the current object

7

The this pointer
• GetValue() is effectively:
int GetValue(DemoClass* this)

{

return m_iValue;

}

• SetValue(int) is effectively:
void SetValue(
DemoClass* this, int iValue)

{

m_iValue = iValue;

}

• i.e. you can refer to m_iValue as
this->m_iValue

• Not always obvious because you can
miss out the this->

class DemoClass
{
public:

int GetValue()
{

return m_iValue;
}

void SetValue(int iValue)
{

m_iValue = iValue;
}

private:
int m_iValue;

};

8

Static methods and attributes
• static members are shared

between all objects of that
class

• NOT associated with a specific
object
– Same as static in Java

• Static member functions do
not have a this pointer

• Both static and non-static
member data and functions
are class members
– i.e. They have access to
private members

class MyClass
{
public:
static int var;
static void foo();

};

int MyClass::var = 25;

void MyClass::foo()
{

var = 32;
}

int main()
{

MyClass::var = 15;
MyClass::foo();

}

9

Static methods/functions
• Declaration of static member

function:
static void foo();

• Usually in .h file

• Definition of static member
function
void MyClass::foo()
{

var = 32;
}

• Usually in .cpp file
• No ‘static’ keyword in cpp file

• Call of static function
MyClass::foo();

class MyClass
{
public:
static int var;
static void foo();

};

int MyClass::var = 25;

void MyClass::foo()
{

var = 32;
}

int main()
{

MyClass::var = 15;
MyClass::foo();

}

10

Static data members / attributes

• Declaration of static data
member:
static int var;

• Usually in a header file

• Definition and initialisation of
static member
int MyClass::var = 25;

• Usually in .cpp file
• Done ONCE

• Use of static member
var = 32; // Within class
MyClass::var = 15;

class MyClass
{
public:
static int var;
static void foo();

};

int MyClass::var = 25;

void MyClass::foo()
{

var = 32;
}

int main()
{

MyClass::var = 15;
MyClass::foo();

}

11

References

A short intro
We’ll see many examples later

12

References

• A way to give a new name to an item
• Look like normal variables

– Usage syntax is same as for non-pointer variables
• Act like pointers

– To work out what will happen with a reference,
think “what would happen if it was a pointer”

• Opinions on references vary:
– Some say “use pointers whenever you can do so”
– Others say “use references whenever you can do so”
– My view:

• “If it acts like a pointer, it should look like a pointer”
• Looking like a non-pointer and acting like a pointer is a

recipe for disaster (my own opinion only)

13

The really confusing part…

• As if that was not confusing enough...
… references are labelled with an &

– Like the address-of operator, but NOT the
address-of operator

• Example:
int i = 1;

int& j = i;

j = 2;

int* pi = &i;

*pi = 3;

j is a reference to i
Just another name for i
Anything done to j will apply to i

Notice that the pointer does
the same kind of thing
*pi is another name for i

14

Example: references.cpp

#include <cstdio>

int main(int argc, char* argv[])
{

int i = 9;
int& j = i;
j = 4;

printf("i=%d, j=%d\n", i, j);

return 1;
}

What is the output?

15

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

16

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

2

i

3

j

17

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

2

a

3

b

2

i

3

j

18

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

5

a

3

b

2

i

3

j

19

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

5

a

3

b

2

i

3

j

20

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

2

i

3

j

3

k

21

Example 2 : Without references
#include <cstdio>

int RefFunction(int a, int b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

2

i

3

j

7

k

22

Passing parameters

• When a function is called, the values of the
parameters are copied into the stack frame
for the new function

• i.e. function gets a copy of the variable

• Not so for references
– Then the parameter refers to the same variable

23

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

24

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

2

i j

3

25

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

New names for same variables: a b

i j

32

26

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

a += b: a b

i j

5 3

27

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

a b

Return reference to b

i j

5 3

28

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

k is a reference to j:

i j

5 3

k

29

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

i j

5 3

k
k += 4:

30

Example 2 : With References
#include <cstdio>

int& RefFunction(int& a, int& b)
{

a += b;
return b;

}

int main()
{

int i = 2;
int j = 3;
int& k = RefFunction(i, j);
k += 4;
printf("%d %d %d\n", i, j, k);
return 0;

}

i j

5 7

k

31

References vs pointers

• Changing what they refer to:
– Pointers can be made to point to something else
– References always bind to a single object, at creation,

and cannot be bound to a new object
– i.e. you can’t make them refer to something else

• References always have to refer to something
– Must give them a thing to refer to on initialisation
– No such thing as a NULL reference

• Pointers need * or -> to dereference them, to
access the thing pointed to
– References do not (use reference name itself, or .)

• Java object references act like C/C++
pointers, NOT C++ references. But they have
the syntax of C++ references (e.g. . not ->)

32

const references

33

const references

• const references make the thing referred to const
– const for pointers can mean either unchangable pointer or

the thing pointed at cannot be changed
– You cannot make a reference refer to something else anyway,

so const always means the thing referred to

• const references are useful for parameters
– Passing by value (not reference) means the original variable

cannot be accidentally modified
• May be safer

– Passing a reference means that no copy is made
• May be quicker – copying objects can be slow

– Using a const reference means no copy needs to be made,
but the original can still not be changed, like a copy but faster

34

The need for references

• Useful if we need to keep the same syntax
– But avoiding making a copy
– Sometimes this is vital – see copy constructor

• Useful as return values, to chain functions
together
– Especially returning *this from member functions

to return reference to current object
• This will make sense later on, with examples

• References are necessary for operator
overloading
– Changing the meaning of operators
– The syntax means that you cannot use pointers

35

Warning

• Similar problems with references as with
pointers

• e.g. do NOT return a reference to a
local variable
– When the local variable vanishes (e.g. the

function ends), the reference refers to
something that doesn’t exist

– Same symptoms as for pointers – it will look
OK until something else uses the memory

36

const members

37

const member data
class DemoClass

{

public:

DemoClass()

: ci(4)

, cj(12)

{}

private:

int const ci;

const int cj;

};

• const member data
MUST be initialised in
the initialisation list for
the constructor
– i.e. an initial value

when member data is
constructed

• Cannot just be set in
constructor body,
since construction
has occurred by then

• Compiler error if
you miss any

Note: Relative order of const
and type only matters for pointers
const * vs * const

38

const references and pointers

• Q: If you have a const reference (or pointer) to an
object, then which methods can you call using the
reference (or pointer)?

MyClass ob2;

const MyClass& rob2a = ob2;

rob2a.GetVal(); // ?

rob2a.SetVal(); // ?

39

const references and pointers

• Q: If you have a const reference (or pointer) to an
object, then which methods can you call using the
reference (or pointer)?

• A: Only methods which guarantee not to change
the object (i.e. accessors)

• These methods are labelled const
– They CANNOT alter member data
– The this pointer is const

• Functions are either mutators or accessors
– Accessors only access data – should be const
– Mutators change data – cannot be const

40

Which of these lines will not compile?
int main()
{

ConstClass ob2;
ConstClass& rob2 = ob2;
const ConstClass& rob2a = ob2;
ConstClass const& rob2b = ob2;

rob2.GetVal();
rob2a.GetVal();
rob2b.GetVal();

rob2.SetVal(3);
rob2a.SetVal(1);
rob2b.SetVal(2);

}

class ConstClass
{
public:

// Constructor
ConstClass()
{}

// Accessor
int GetVal() const
{ return _ival; }

// Mutator
void SetVal(int ival)
{ _ival = ival; }

private:
int _ival;

};

41

Example: const functions
int main()
{

ConstClass ob2;
ConstClass& rob2 = ob2;
const ConstClass& rob2a = ob2;
ConstClass const& rob2b = ob2;

rob2.GetVal();
rob2a.GetVal();
rob2b.GetVal();

rob2.SetVal(3);

// The following 2 lines
// do not compile
rob2a.SetVal(1);
rob2b.SetVal(2);

}

class ConstClass
{
public:

// Constructor
ConstClass()
{}

// Accessor
int GetVal() const
{ return _ival; }

// Mutator
void SetVal(int ival)
{ _ival = ival; }

private:
int _ival;

};

42

This can be altered even by
const member functions

mutable
• The compiler will not allow you to alter member data from

a member function declared as const
– If you try, then you will get a compilation error

• If you need to alter a specific variable within a const
member function, you can declare that variable mutable

• e.g. for a class which caches the last value retrieved:
class CachingClass

{

int _iVal;

mutable int _lastgot;

public:

int GetVal() const

{_lastgot = _iVal; return _iVal; }

void SetVal(int iVal) const

{ _iVal = iVal; }

}

43

mutable
• The compiler will not allow you to alter any member data

from a member function declared as const
– If you try, then you will get a compilation error

• If you need to alter a specific variable within a const
member function, you can declare that variable mutable

• e.g. for a class which caches the last value retrieved:
class CachingClass

{

int _iVal;

mutable int _lastgot;

public:

int GetVal() const

{_lastgot = _iVal; return _iVal; }

void SetVal(int iVal) const

{ _iVal = iVal; }

}
Compilation error

const fn sets _ival

OK, since
_lastgot
is mutable

44

Next Lecture

• Function pointers

• Virtual and non-virtual functions
– v-tables

